

2

Contents

Getting started 5

Installation 7

Download . 7

Unpacking . 7

Java . 8

.NET . 8

C++ . 8

Python . 8

Objective-C . 9

License . 9

Hello Sparksee 11

Setting up . 11

Create a Sparksee database . 13

Sessions and transactions . 14

Set the schema . 15

Create node types . 17

Create edge types . 19

Adding data . 21

Add nodes . 21

Add edges . 25

First queries . 29

Closing the database . 37

Compile and run 39

Java . 39

With Maven . 39

With Android . 39

.NET . 40

MS Visual Studio users . 40

Command-line users . 41

C++ . 42

3

Windows . 43

Linux/MacOS . 45

Android . 46

iOS . 47

Python . 47

Objective-C . 48

MacOS . 48

iOS . 48

Download examples 51

Support 53

4

Getting started

This is the starting guide for Sparksee graph database. We will guide you
during the creation of your first Sparksee graph, from downloading Sparksee to
the execution of your graph. It should not take you much time but if you want
to start faster, download Sparksee, download the example and run it now!.
If you are not familiar with graph databases or graph concepts, please visit this
article.
The first thing you should know about the Sparksee graph you are going to
build is that we define it as a labeled and directed attributed mutigraph. It is
labeled because all the nodes and edges can have a type (a label) to classify
them; directed because it supports edges with direction from the tail node to
the head node, of course we support undirected edges too!; attributed because
both nodes and edges can have one or more properties; and, finally, it is a
multigraph because there are no restrictions on the number of edges between
two nodes.
Figure 1 is an example of a Sparksee multigraph. Here there are two types
of nodes (PEOPLE represented by a star icon and MOVIE shown as a clap-
perboard icon) which both have an attribute (called respectively NAME and
TITLE) with a value for each of them. For instance you can see a Scarlett
Johansson (NAME) node which will be of type PEOPLE (star icon). Also
we can see two types of edges (DIRECTS shown in blue and CAST shown in
orange). A directed edge has an arrow pointing to its head node (DIRECTS),
while an undirected edge does not have any arrows (CAST). As many attributes
as desired could be added to both edges and nodes.

Figure 1: Hello Sparksee

Figure 1 above illustrates the Sparksee labeled and directed attributed multi-
graph definition. It has labels, as nodes and edges have types, is directed because
edge DIRECTS has a certain direction and is a multigraph because node Woody
Allen with node Manhattan, for instance, has two edges.
Following the steps in this guide will help you construct the graph illustrated
in Figure 1.

5

https://www.sparsity-technologies.com/form-trial/
http://en.wikipedia.org/wiki/Graph_theory
http://en.wikipedia.org/wiki/Graph_theory

It is also relevant to know that Sparksee is an embedded database, so from this
point on, you should take into account the fact that installation and deployment
of your graph database has to be made considering your programming language
preference and framework.

6

http://en.wikipedia.org/wiki/Embedded_database

Installation

Let’s start with the installation of Sparksee graph database. Sparksee only needs
to be downloaded and unpacked. Depending on which language you prefer, a
few settings or considerations may need to be taken into account too.
By downloading Sparksee you should have received a free personal evaluation
license. Learn more about it in the last section of this chapter.

Download

Sparksee is available for several programming languages, so the first thing you
should do is download the right package for your development platform.
All the packages can be downloaded here.
Available platforms:

• Java: This is the package for all new Sparksee Java projects.
• Microsoft .NET: Sparksee is natively available for .NET developers.
• C++: A C++ interface is also available. Sparksee core is C++, so we

punch it another level to the API.
• Python: Sparksee is available for Python 2.7 developers.
• Objective-C An Objective-C api is provided for iOS and MacOS devel-

opers. The C++ interface can still be used in Objective-C projects.

Java developers can also get Sparksee through Apache Maven instead of manu-
ally downloading the packages. More information in Sparksee maven project.

Unpacking

Once you have downloaded Sparksee and unpacked it, the content of most pack-
ages should look like this:

• doc: This is the directory that contains Sparksee API reference docu-
mentation in html or another specific format for each platform.

• lib: A directory with Sparksee libraries. It may have subdirectories when
different files are required regarding each operating system.

• ReleaseNotes.txt: This is a text file with basic information on the latest
release changes.

• LICENSE.txt: Contains Sparksee licensing information.

According to the programming language particularities, some packages may
include additional contents.
Unpack the downloaded Sparksee package and it’s ready to be used. No further
installation is required, with the exception of Objective-C on MacOS, where an
installer is provided to easily copy the framework to the right standard directory.
However, some additional steps can be taken to make Sparksee usage easier for
your platform.

7

https://www.sparsity-technologies.com/form-trial/
http://search.maven.org/#search%7Cga%7C1%7Ca%3A%22sparkseejava%22

Java

All the libraries required to develop a java application with Sparksee are con-
tained in a jar file located at the lib directory (sparkseejava.jar).

If you are not using Maven, you may want to add the path to this file into the
CLASSPATH environment variable. However, to avoid any misunderstandings,
in this document we will explicitly use the file to compile the examples.

.NET

The .NET package contains two subdirectories in the lib directory (windows32
and windows64) for 32 or 64 bit systems. In each one the main library included
is sparkseenet.dll. This is the library that you will need to include in your .NET
projects.

All the other available libraries in the package are native dlls that sparkseenet.dll
must be able to find at run time. Although it is not required, you may want to
copy all these libraries to your system folder.

C++

The C++ lib folder contains native libraries for each available platform (Win-
dows 32/64 bits, Linux 32/64 bits, MacOS 64 bits,…).

In Linux and MacOS, you may want to add the path to the correct subdirec-
tory to your LD_LIBRARY_PATH (linux) or DYLD_LIBRARY_PATH(MacOS)
environment variables.

In Windows you can copy the libraries to the system folders or just be sure to
always include them in your projects.

The rest of files included in this package, like the ones in the includes directory,
will be needed at compilation time. See Chapter 4.

For iOS you have to uncompress the “.dmg” file to get the Spark-
see.framework directory. This directory contains the include files, the
static library and the documentation. More information on how to use it
can be found on Chapter 4. Please consider using the Objective-C version of
Sparksee instead.

Python

Python lib contains the native libraries for each available platform (Windows
32/64 bits, Linux 32/64 bits and MacOS 64 bits) in addition to the Python
module.

Make sure to include both the Python module (called sparksee.py) and the
wrapper library named ”_sparksee” in an accessible folder for Python, please
refer to Python module search path for more information about the search path.

8

http://docs.python.org/2/tutorial/modules.html#the-module-search-path

The other available library included in Sparksee’s Python distribution is the
dynamic native library. This must be located in a specific system directory
defined by the following:

• DYLD_LIBRARY_PATH for MacoOSX systems.
• LD_LIBRARY_PATH for Linux systems.
• PATH environment variable for Windows systems.

Objective-C

For the Objective-C, the content of the dmg file is slightly different because,
instead of the lib and doc directories, you will find the Sparksee.framework
directory or its installer regarding if its the iOs or MacOS versions. The doc-
umentation will be available directly on the framework subdirectory Resources/
Documentation.

• MacOS
The dmg file for Mac OS contains an installer (SparkseeInstaller.pkg) that
you should run. This will extract the framework directory to the right
location (/Library/Frameworks/Sparksee.framework).
If you are asked for a target disk, you must choose the main system disk.
Your application will depend on the Sparksee dynamic library, so it will
need to find it in the right location at runtime.

• iOS
The dmg file for iOS contains the Sparksee.framework directory with-
out an installer because there is not the same location restriction as for
the MacOS version.
When you build your application the Sparksee library will be embedded;
since it’s not a dynamic library framework it doesn’t need to be found at
any specific location at runtime.

License

Every Sparksee download comes with a mail containing a limited personal eval-
uation license, that must be configured using the provided client identifier and
license identifier. The personal evaluation license allows the construction of
graphs with up to 1M objects, which is more than enough to construct the
example explained in this guide.

If you have commercial interest or need to deal with larger databases, check
Sparksee’s website license section for licenses quotation on the latest release of
Sparksee.

If you hold a license identifiers, later in this document you will learn how to use
your license for a project.

9

https://www.sparsity-technologies.com/pricing
https://www.sparsity-technologies.com/pricing

10

Hello Sparksee

If have reached this chapter you should now have Sparksee correctly installed
in your computer and be ready to work in your development framework.

You have previously been introduced to Sparksee APIs and you should have
chosen the language with which you feel most familiar. Here we will explain the
complete construction of the HelloSparksee application, including the building
of the database plus your first queries. For each step in the development we will
show an example using all the available Sparksee programming languages; just
focus on your chosen language.

Let’s say Hello to Sparksee!

Setting up

The first step is the creation of a directory for this project and the new sample
application in your development environment. We will come later in the compile
and run chapter with certain modifications in the project in order to be able to
run Sparksee.

As part of the setup, you could create a text file with the name “sparksee.cfg”
(or any other name, if you explicitly load it) in the same folder where the
executable file will be. This configuration file will establish the default Sparksee
settings. This is not a required task, because you can modify these settings
directly in the source code using the SparkseeConfig class methods.

These are the most common settings that you may want to set in this file:

• sparksee.clientId : This is your client identifier, that was provided in
the license mail that you should have received. It must be provided on all
releases since Sparksee 6.0.

• sparksee.licenseId : This is your license identifier, that was provided in
the license mail that you should have received. It must be provided on all
releases since Sparksee 6.0.

• sparksee.license : This option is used to directly set your license key.
This was the old way (Sparksee releases <= 5.x.x) of setting the license
key. You should not need to do it anymore because the license key can
now be automatically downloaded and updated for you just setting the
license and client identifiers. The option is still in use, but it should be
filled automatically for you.

• sparksee.io.cache.maxsize : Sets the maximum size for the cache (all
pools) in megabytes. By default Sparksee uses almost all of the available
memory, just leaving enough memory for other needs. If you are run-
ning several memory consuming applications at the same time you must
consider adjusting this parameter.

• sparksee.log.file : Changes the log file path. The default value is sparksee
.log.

11

• sparksee.log.level : The level of detail provided by the log file can be
modified with this option. Valid values are: Off, Severe, Warning, Info,
Config, Fine and Debug. The default level is Info. For HelloSparksee you
will not need to change this level.

A sparksee.cfg file could, for instance, look like this one:
sparksee.clientId=Your-client-id
sparksee.licenseId=Your-license-id
sparksee.io.cache.maxsize=2048
sparksee.log.file=HelloSparksee.log

Where Your−client−id and Your−license−id are the client UUID and license
UUID provided by Sparsity Technologies when you acquired a license, the cache
assigned for Sparksee is 2GB and the log file name is changed for HelloSparksee
.log.

Following this guide we will construct the HelloSparksee example step by step,
if you want to go faster, once you are done with the set up you can download
the complete application, copy it in your sample application and jump to the
compile and run chapter. However we recommend following the guide for a
complete understanding of each of the steps of creating a graph database and
querying it.

Let’s now finish the set up by moving from the directories to your development
framework and start coding. Before starting to create your database you should
first include references to Sparksee: this is mandatory.

Java
import com.sparsity.sparksee.gdb.*;

C#
using com.sparsity.sparksee.gdb;

C++
#include "gdb/Sparksee.h"
#include "gdb/Database.h"
#include "gdb/Session.h"
#include "gdb/Graph.h"
#include "gdb/Objects.h"
#include "gdb/ObjectsIterator.h"

Python
import sparksee

12

Objective-C
#import <Sparksee/Sparksee.h>

Create a Sparksee database

Now that we have the set up complete and we have started coding, let’s create
our first database. In this chapter we are going to create a simple database
containing information about certain movies, their actors and directors.

The first thing you should do is to create a SparkseeConfig object to estab-
lish the Sparksee main settings. That object will be created using the global
SparkseeProperties settings (initially loaded from a sparksee.cfg file). You do
not have to change any setting directly here, but its creation is a must before
creating the Sparksee object.

If you have not set your client and license ids in the configuration file, you must
set them in the SparkseeConfig class using the setClientId and setLicenseId
methods.

The newly created SparkseeConfig object will be used to create a Sparksee object.
Once you have created this object, you can create your databases.

A new database needs a file path (HelloSparksee.gdb) and a name (HelloSparksee
). This database file is where all the persistent information will be stored.

Java
// Providing a config file to SparkseeConfig will allow it to store the
// downloaded key avoiding having to download it again until it expires.
SparkseeConfig cfg = new SparkseeConfig("sparksee.cfg");
// The setClientId and setLicenseId method calls are only required if your
// license has not been setup in the configuration file (sparksee.cfg by default)
cfg.setClientId("Your client identifier");
cfg.setLicenseId("Your license identifier");
Sparksee sparksee = new Sparksee(cfg);
Database db = sparksee.create("HelloSparksee.gdb", "HelloSparksee");

C#
// Providing a config file to SparkseeConfig will allow it to store the
// downloaded key avoiding having to download it again until it expires.
SparkseeConfig cfg = new SparkseeConfig("sparksee.cfg");
// The setClientId and setLicenseId method calls are only required if your
// license has not been setup in the configuration file (sparksee.cfg by default)
cfg.SetClientId("Your client identifier");
cfg.SetLicenseId("Your license identifier");
Sparksee sparksee = new Sparksee(cfg);
Database db = sparksee.Create("HelloSparksee.gdb", "HelloSparksee");

C++

13

// Providing a config file to SparkseeConfig will allow it to store the
// downloaded key avoiding having to download it again until it expires.
SparkseeConfig cfg(L"sparksee.cfg");
// The setClientId and setLicenseId method calls are only required if your
// license has not been setup in the configuration file (sparksee.cfg by default)
cfg.SetClientId(L"Your client identifier");
cfg.SetLicenseId(L"Your license identifier");
Sparksee *sparksee = new Sparksee(cfg);
Database *db = sparksee->Create(L"HelloSparksee.gdb", L"HelloSparksee");

Python
Providing a config file to SparkseeConfig will allow it to store the
downloaded key avoiding having to download it again until it expires.
cfg = sparksee.SparkseeConfig("sparksee.cfg")
The setClientId and setLicenseId method calls are only required if your
license has not been setup in the configuration file (sparksee.cfg by default)
cfg.set_client_id("Your client identifier")
cfg.set_license_id("Your license identifier")
sparks = sparksee.Sparksee(cfg)
db = sparks.create("Hellosparksee.gdb", "HelloSparksee")

Objective-C
// Providing a config file to SparkseeConfig will allow it to store the
// downloaded key avoiding having to download it again until it expires.
STSSparkseeConfig *cfg = [[STSSparkseeConfig alloc] initWithPath: @"sparksee.cfg"

];
// The setClientId and setLicenseId method calls are only required if your
// license has not been setup in the configuration file (sparksee.cfg by default)
[cfg setClientId: @"Your client identifier"];
[cfg setLicenseId: @"Your license identifier"];
STSSparksee *sparksee = [[STSSparksee alloc] initWithConfig: cfg];
// If you are not using Objective-C Automatic Reference Counting, you
// may want to release the configuration here.
//[cfg release];
STSDatabase *db = [sparksee create: @"HelloSparksee.gdb" alias: @"HelloSparksee"];

Sessions and transactions

All the manipulation of a database must be enclosed within a session. A Session
should be initiated from a Database instance. This is where you can get a Graph
instance which represents the persistent graph (the graph database).
The Graph instance is needed to manipulate the Database as a graph.
Also, temporary data is associated to the Session, thus when a Session is
closed, all the temporary data associated to that Session is removed too. Objects
or Values instances or even session attributes are an example of temporary data.
You must take into account the fact that a Session is exclusive for a thread, we
do not encourage sharing it among threads as it will definitely raise unexpected
errors.
A Session manages the transactions, allowing the execution of a set of graph
operations as a single execution unit. A transaction encloses all the graph op-
erations between the Session Begin and Commit or Rollback methods, or just a

14

single operation in autocommit mode (where no begin/commit/rollback meth-
ods are used).

Initially, a transaction starts as a read transaction and only when there is a
call to a method which updates the persistent graph database, it automatically
becomes a write transaction. To become a write transaction it must wait until
all other read transactions have finished. But a transaction can also be started
as a write transaction using the BeginUpdate method instead of Begin.

Since HelloSparksee is a simple example we are going to use autocommit because
we don’t need more complex transactions.

For more information about Sparksee transactions please take a look at the
Session class in the reference documentation of your chosen Sparksee API.

Java
Session sess = db.newSession();
Graph g = sess.getGraph();

C#
Session sess = db.NewSession();
Graph g = sess.GetGraph();

C++
Session *sess = db->NewSession();
Graph *g = sess->GetGraph();

Python
sess = db.new_session()
graph = sess.get_graph()

Objective-C
STSSession *sess = [db createSession];
STSGraph *g = [sess getGraph];

Set the schema

The HelloSparksee sample application is a very simple movie database where
we store information about movies, their actors and directors. All of them are
nodes in the graph whereas the relationships between them are edges.

In a graph database we can represent movies, actors and directors using two
node types:

15

• MOVIE: This type represents a movie.
• PEOPLE: This type represents a person involved in a movie, be they

cast or crew member.

We can enrich these by adding more information such as the movie title, year
of production, or in the case of the people only their names. This information
are attributes of the recently created node types:

For each MOVIE we may need the following attributes:

• ID: Unique identification for a movie.
• TITLE: Original title.
• YEAR: Year of production.

For PEOPLE we need these attributes:

• ID: Unique identification for a person.
• NAME: Complete name.

Figure 2: HelloSparksee node schema

Note that the ID attribute is not required, but it is always useful to have a
unique attribute value in order to identify each node, as the other attributes
(name and title) can’t be considered unique.

The relationships are represented by edges between the former two types of
nodes. We need two types of edges:

• CAST: Represents the relationship between PEOPLE and MOVIE
meaning that the person is part of the cast of that movie.

• DIRECTS: Represents the relationship between PEOPLE and
MOVIE meaning that the person is the director of that particular
movie.

16

The first one (CAST) is going to be an undirected edge and it will have an
attribute (CHARACTER) to store the name of the role performed in that
movie. In fact it is not a restricted edge, so we could use it between other types
of nodes too. For example, later on we could add a new node type “ANIMAL”
and use the same “CAST” edge type between “MOVIE” and “ANIMAL” nodes.

The other (DIRECTS) is going to be a restricted directed edge without
attributes. It is restricted because it can only be used between PEOPLE and
MOVIE nodes.

Figure 3: HelloSparksee schema

Create node types

Let’s now construct the node types MOVIE and PEOPLE and then add the
desired attributes to each type definition, which we have defined in our schema.

There are three types of attributes:

• Basic: This type of attributes cannot be used for query operations (just
get and set attribute values).

• Unique: Attributes that work as a primary key, which means that two
objects cannot have the same value for an attribute (but NULL). They
can be used for query operations.

• Indexed: Attributes that can be used for query operations.

Also you have to choose a datatype for the attributes. Available datatypes for
attributes are: Boolean, Integer, Long, Double, Timestamp, String, Text and OID.

The ID attributes are going to be numeric (Long) unique values. The TITLE
and NAME attributes are going to be String values and both are going to be
Indexed. For the YEAR attribute we are going to use an Integer type and this
is also going to be Indexed.

Java

17

// Add a node type for the movies, with a unique identifier and two indexed
attributes

int movieType = g.newNodeType("MOVIE");
int movieIdType = g.newAttribute(movieType, "ID", DataType.Long, AttributeKind.

Unique);
int movieTitleType = g.newAttribute(movieType, "TITLE", DataType.String,

AttributeKind.Indexed);
int movieYearType = g.newAttribute(movieType, "YEAR", DataType.Integer,

AttributeKind.Indexed);

// Add a node type for the people, with a unique identifier and an indexed
attribute

int peopleType = g.newNodeType("PEOPLE");
int peopleIdType = g.newAttribute(peopleType, "ID", DataType.Long, AttributeKind.

Unique);
int peopleNameType = g.newAttribute(peopleType, "NAME", DataType.String,

AttributeKind.Indexed);

C#
// Add a node type for the movies, with a unique identifier and two indexed

attributes
int movieType = g.NewNodeType("MOVIE");
int movieIdType = g.NewAttribute(movieType, "ID", DataType.Long, AttributeKind.

Unique);
int movieTitleType = g.NewAttribute(movieType, "TITLE", DataType.String,

AttributeKind.Indexed);
int movieYearType = g.NewAttribute(movieType, "YEAR", DataType.Integer,

AttributeKind.Indexed);

// Add a node type for the people, with a unique identifier and an indexed
attribute

int peopleType = g.NewNodeType("PEOPLE");
int peopleIdType = g.NewAttribute(peopleType, "ID", DataType.Long, AttributeKind.

Unique);
int peopleNameType = g.NewAttribute(peopleType, "NAME", DataType.String,

AttributeKind.Indexed);

C++
// Add a node type for the movies, with a unique identifier and two indexed

attributes
type_t movieType = g->NewNodeType(L"MOVIE");
attr_t movieIdType = g->NewAttribute(movieType, L"ID", Long, Unique);
attr_t movieTitleType = g->NewAttribute(movieType, L"TITLE", String, Indexed);
attr_t movieYearType = g->NewAttribute(movieType, L"YEAR", Integer, Indexed);

// Add a node type for the people, with a unique identifier and an indexed
attribute

type_t peopleType = g->NewNodeType(L"PEOPLE");
attr_t peopleIdType = g->NewAttribute(peopleType, L"ID", Long, Unique);
attr_t peopleNameType = g->NewAttribute(peopleType, L"NAME", String, Indexed);

Python
Add a node type for the movies, with a unique identifier and two indexed

attributes
movie_type = graph.new_node_type(u"MOVIE")
movie_id_type = graph.new_attribute(movie_type, u"ID", sparksee.DataType.LONG,

sparksee.AttributeKind.UNIQUE)
movie_title_type = graph.new_attribute(movie_type, u"TITLE", sparksee.DataType.

STRING, sparksee.AttributeKind.INDEXED)
movie_year_type = graph.new_attribute(movie_type, "uYEAR", sparksee.DataType.

INTEGER, sparksee.AttributeKind.INDEXED)

18

Add a node type for the people, with a unique identifier and an indexed
attribute

people_type = graph.new_nodetype(u"PEOPLE")
people_id_type = graph.new_attribute(people_type, u"ID", sparksee.DataType.LONG,

sparksee.AttributeKind.UNIQUE)
people_name_type = graph.new_attribute(people_type, u"NAME", sparksee.DataType.

STRING, sparksee.AttributeKind.INDEXED)

Objective-C
// Add a node type for the movies, with a unique identifier and two indexed

attributes
int movieType = [g createNodeType: @"MOVIE"];
int movieIdType = [g createAttribute: movieType name: @"ID" dt: STSLong kind:

STSUnique];
int movieTitleType = [g createAttribute: movieType name: @"TITLE" dt: STSString

kind: STSIndexed];
int movieYearType = [g createAttribute: movieType name: @"YEAR" dt: STSInteger

kind: STSIndexed];

// Add a node type for the people, with a unique identifier and an indexed
attribute

int peopleType = [g createNodeType: @"PEOPLE"];
int peopleIdType = [g createAttribute: peopleType name: @"ID" dt: STSLong kind:

STSUnique];
int peopleNameType = [g createAttribute: peopleType name: @"NAME" dt: STSString

kind: STSIndexed];

Create edge types

Now that we have created our nodes let’s add the relationships we have previ-
ously explained in our schema.

We have defined edge types CAST and DIRECTS. We stated during the
schema explanation that CAST will be undirected while DIRECTS will be
directed. Let’s explain a little bit more about this classification of our edge
types.

Directed edges have a node which is the tail (the source of the edge) and a node
which is the head (the destination of the edge). In case of undirected edges,
each node at the extreme of the edge plays two roles at the same time, head and
tail. Whereas undirected edges express navigation in any side, directed edges
show the direction of the edge but they can also be navigated through that
natural direction or the opposite one.

Also, edges can be classified as restricted or unrestricted. Restricted edges
define which must be the type of the tail and head nodes, thus edges will only
be allowed between those specified type of nodes. In case of unrestricted
edges, there is no restriction, and edges are allowed between nodes belonging to
any type. It is important to note that restricted edges must be directed edges.

In addition, in our schema we have decided that CAST will have an attribute
called CHARACTER. The CHARACTER attribute is going to be a String
and we are going to set it as Basic. See the previous section for more information
about the attribute types.

19

Java
// Add an undirected edge type with an attribute for the cast of a movie
int castType = g.newEdgeType("CAST", false, false);
int castCharacterType = g.newAttribute(castType, "CHARACTER", DataType.String,

AttributeKind.Basic);

// Add a directed edge type restricted to go from people to movie for the director
of a movie

int directsType = g.newRestrictedEdgeType("DIRECTS", peopleType, movieType, false)
;

C#
// Add an undirected edge type with an attribute for the cast of a movie
int castType = g.NewEdgeType("CAST", false, false);
int castCharacterType = g.NewAttribute(castType, "CHARACTER", DataType.String,

AttributeKind.Basic);

// Add a directed edge type restricted to go from people to movie for the director
of a movie

int directsType = g.NewRestrictedEdgeType("DIRECTS", peopleType, movieType, false)
;

C++
// Add an undirected edge type with an attribute for the cast of a movie
type_t castType = g->NewEdgeType(L"CAST", false, false);
attr_t castCharacterType = g->NewAttribute(castType, L"CHARACTER", String, Basic);

// Add a directed edge type restricted to go from people to movie for the director
of a movie

type_t directsType = g->NewRestrictedEdgeType(L"DIRECTS", peopleType, movieType,
false);

Python
Add an undirected edge type with an attribute for the cast of a movie
cast_type = graph.new_edge_type(u"CAST", False, False)
cast_character_type = graph.new_attribute(cast_type, u"CHARACTER", sparksee.

DataType.STRING, sparksee.AttributeKind.BASIC)

Add a directed edge type restricted to go from people to movie for the director
of a movie

directs_type = graph.new_restricted_edge_type(u"DIRECTS", people_type, movie_type,
False)

Objective-C
// Add an undirected edge type with an attribute for the cast of a movie
int castType = [g createEdgeType: @"CAST" directed: FALSE neighbors: FALSE];
int castCharacterType = [g createAttribute: castType name: @"CHARACTER" dt:

STSString kind: STSBasic];

// Add a directed edge type restricted to go from people to movie for the director
of a movie

int directsType = [g createRestrictedEdgeType: @"DIRECTS" tail: peopleType head:
movieType neighbors: FALSE];

20

Adding data

Once the schema has been created the next step is to add data. It is interesting
to note that the schema can be modified later with no great impact to the
database, which is an important characteristic of the Sparksee graph database.

In the HelloSparksee example we are adding enough information to be able to
perform some simple queries afterwards.

Although is out of the scope of this guide, it is worth noting that you can use
Sparksee loaders if you are dealing with large data sets.

Add nodes

We are going to add information about these movies:

• Lost in Translation
• Vicky Cristina Barcelona
• Manhattan

And some of the people that worked in these movies:

• Scarlett Johansson
• Bill Murray
• Sofia Coppola
• Woody Allen
• Penélope Cruz
• Diane Keaton

In a previous section we have seen that all this information is stored as nodes
with attributes. So, we have to create 3 MOVIE nodes for the films, which
will each have the attributes ID, Title and Year. Also we have to create 6
PEOPLE nodes for the cast and crew, where each will have the attributes ID
and Name. Notice that we use the class Value to set the attributes values, and
the same Value object is reused for all the attributes.

Java
// Add some MOVIE nodes
Value value = new Value();

long mLostInTranslation = g.newNode(movieType);
g.setAttribute(mLostInTranslation, movieIdType, value.setLong(1));
g.setAttribute(mLostInTranslation, movieTitleType, value.setString("Lost in

Translation"));
g.setAttribute(mLostInTranslation, movieYearType, value.setInteger(2003));

long mVickyCB = g.newNode(movieType);
g.setAttribute(mVickyCB, movieIdType, value.setLong(2));
g.setAttribute(mVickyCB, movieTitleType, value.setString("Vicky Cristina Barcelona

"));
g.setAttribute(mVickyCB, movieYearType, value.setInteger(2008));

long mManhattan = g.newNode(movieType);
g.setAttribute(mManhattan, movieIdType, value.setLong(3));
g.setAttribute(mManhattan, movieTitleType, value.setString("Manhattan"));

21

Figure 4: Adding nodes

g.setAttribute(mManhattan, movieYearType, value.setInteger(1979));

// Add some PEOPLE nodes
long pScarlett = g.newNode(peopleType);
g.setAttribute(pScarlett, peopleIdType, value.setLong(1));
g.setAttribute(pScarlett, peopleNameType, value.setString("Scarlett Johansson"));

long pBill = g.newNode(peopleType);
g.setAttribute(pBill, peopleIdType, value.setLong(2));
g.setAttribute(pBill, peopleNameType, value.setString("Bill Murray"));

long pSofia = g.newNode(peopleType);
g.setAttribute(pSofia, peopleIdType, value.setLong(3));
g.setAttribute(pSofia, peopleNameType, value.setString("Sofia Coppola"));

long pWoody = g.newNode(peopleType);
g.setAttribute(pWoody, peopleIdType, value.setLong(4));
g.setAttribute(pWoody, peopleNameType, value.setString("Woody Allen"));

long pPenelope = g.newNode(peopleType);
g.setAttribute(pPenelope, peopleIdType, value.setLong(5));
g.setAttribute(pPenelope, peopleNameType, value.setString("Penélope Cruz"));

long pDiane = g.newNode(peopleType);
g.setAttribute(pDiane, peopleIdType, value.setLong(6));
g.setAttribute(pDiane, peopleNameType, value.setString("Diane Keaton"));

C#
// Add some MOVIE nodes
Value value = new Value();

long mLostInTranslation = g.NewNode(movieType);
g.SetAttribute(mLostInTranslation, movieIdType, value.SetLong(1));
g.SetAttribute(mLostInTranslation, movieTitleType, value.SetString("Lost in

Translation"));

22

g.SetAttribute(mLostInTranslation, movieYearType, value.SetInteger(2003));

long mVickyCB = g.NewNode(movieType);
g.SetAttribute(mVickyCB, movieIdType, value.SetLong(2));
g.SetAttribute(mVickyCB, movieTitleType, value.SetString("Vicky Cristina Barcelona

"));
g.SetAttribute(mVickyCB, movieYearType, value.SetInteger(2008));

long mManhattan = g.NewNode(movieType);
g.SetAttribute(mManhattan, movieIdType, value.SetLong(3));
g.SetAttribute(mManhattan, movieTitleType, value.SetString("Manhattan"));
g.SetAttribute(mManhattan, movieYearType, value.SetInteger(1979));

// Add some PEOPLE nodes
long pScarlett = g.NewNode(peopleType);
g.SetAttribute(pScarlett, peopleIdType, value.SetLong(1));
g.SetAttribute(pScarlett, peopleNameType, value.SetString("Scarlett Johansson"));

long pBill = g.NewNode(peopleType);
g.SetAttribute(pBill, peopleIdType, value.SetLong(2));
g.SetAttribute(pBill, peopleNameType, value.SetString("Bill Murray"));

long pSofia = g.NewNode(peopleType);
g.SetAttribute(pSofia, peopleIdType, value.SetLong(3));
g.SetAttribute(pSofia, peopleNameType, value.SetString("Sofia Coppola"));

long pWoody = g.NewNode(peopleType);
g.SetAttribute(pWoody, peopleIdType, value.SetLong(4));
g.SetAttribute(pWoody, peopleNameType, value.SetString("Woody Allen"));

long pPenelope = g.NewNode(peopleType);
g.SetAttribute(pPenelope, peopleIdType, value.SetLong(5));
g.SetAttribute(pPenelope, peopleNameType, value.SetString("Penélope Cruz"));

long pDiane = g.NewNode(peopleType);
g.SetAttribute(pDiane, peopleIdType, value.SetLong(6));
g.SetAttribute(pDiane, peopleNameType, value.SetString("Diane Keaton"));

C++
// Add some MOVIE nodes
Value *value = new Value();

oid_t mLostInTranslation = g->NewNode(movieType);
g->SetAttribute(mLostInTranslation, movieIdType, value->SetLong(1));
g->SetAttribute(mLostInTranslation, movieTitleType, value->SetString(L"Lost in

Translation"));
g->SetAttribute(mLostInTranslation, movieYearType, value->SetInteger(2003));

oid_t mVickyCB = g->NewNode(movieType);
g->SetAttribute(mVickyCB, movieIdType, value->SetLong(2));
g->SetAttribute(mVickyCB, movieTitleType, value->SetString(L"Vicky Cristina

Barcelona"));
g->SetAttribute(mVickyCB, movieYearType, value->SetInteger(2008));

oid_t mManhattan = g->NewNode(movieType);
g->SetAttribute(mManhattan, movieIdType, value->SetLong(3));
g->SetAttribute(mManhattan, movieTitleType, value->SetString(L"Manhattan"));
g->SetAttribute(mManhattan, movieYearType, value->SetInteger(1979));

// Add some PEOPLE nodes
oid_t pScarlett = g->NewNode(peopleType);
g->SetAttribute(pScarlett, peopleIdType, value->SetLong(1));
g->SetAttribute(pScarlett, peopleNameType, value->SetString(L"Scarlett Johansson")

);

oid_t pBill = g->NewNode(peopleType);
g->SetAttribute(pBill, peopleIdType, value->SetLong(2));
g->SetAttribute(pBill, peopleNameType, value->SetString(L"Bill Murray"));

23

oid_t pSofia = g->NewNode(peopleType);
g->SetAttribute(pSofia, peopleIdType, value->SetLong(3));
g->SetAttribute(pSofia, peopleNameType, value->SetString(L"Sofia Coppola"));

oid_t pWoody = g->NewNode(peopleType);
g->SetAttribute(pWoody, peopleIdType, value->SetLong(4));
g->SetAttribute(pWoody, peopleNameType, value->SetString(L"Woody Allen"));

oid_t pPenelope = g->NewNode(peopleType);
g->SetAttribute(pPenelope, peopleIdType, value->SetLong(5));
g->SetAttribute(pPenelope, peopleNameType, value->SetString(L"Penélope Cruz"));

oid_t pDiane = g->NewNode(peopleType);
g->SetAttribute(pDiane, peopleIdType, value->SetLong(6));
g->SetAttribute(pDiane, peopleNameType, value->SetString(L"Diane Keaton"));

Python

Add some MOVIE nodes
value = sparksee.Value()

lost_in_translation_movie = graph.new_node(movie_type)
graph.set_attribute(lost_in_translation_movie , movie_id_type, value.set_long(1))
graph.set_attribute(lost_in_translation_movie , movie_title_type, value.set_string(

u"Lost in Translation"))
graph.set_attribute(lost_in_translation_movie , movie_year_type, value.set_integer

(2003))

vicky_cb_movie = graph.new_node(movie_type)
graph.set_attribute(vicky_cb_movie, movie_id_type, value.set_long(2))
graph.set_attribute(vicky_cb_movie, movie_title_type, value.set_string(u"Vicky

Cristina Barcelona"))
graph.set_attribute(vicky_cb_movie, movie_year_type, value.set_integer(2008))

manhattan_movie = graph.new_node(movie_type)
graph.set_attribute(manhattan_movie, movie_id_type, value.set_long(3))
graph.set_attribute(manhattan_movie, movie_title_type, value.set_string(u"

manhattan_movie"))
graph.set_attribute(manhattan_movie, movie_year_type, value.set_integer(1979))

Add some PEOPLE nodes
scarlett_people = graph.new_node(people_type)
graph.set_attribute(scarlett_people, people_id_type, value.set_long(1))
graph.set_attribute(scarlett_people, people_name_type, value.set_string(u"Scarlett

Johansson"))

bill_people = graph.new_node(people_type)
graph.set_attribute(bill_people, people_id_type, value.set_long(2))
graph.set_attribute(bill_people, people_name_type, value.set_string(u"Bill Murray"

))

sofia_people = graph.new_node(people_type)
graph.set_attribute(sofia_people, people_id_type, value.set_long(3))
graph.set_attribute(sofia_people, people_name_type, value.set_string(u"Sofia

Coppola"))

woody_people = graph.new_node(people_type)
graph.set_attribute(woody_people, people_id_type, value.set_long(4))
graph.set_attribute(woody_people, people_name_type, value.set_string(u"Woody Allen

"))

penelope_people = graph.new_node(people_type)
graph.set_attribute(penelope_people, people_id_type, value.set_long(5))
graph.set_attribute(penelope_people, people_name_type, value.set_string(u"Penélope

Cruz"))

diane_people = graph.new_node(people_type)
graph.set_attribute(diane_people, people_id_type, value.set_long(6))

24

graph.set_attribute(diane_people, people_name_type, value.set_string(u"Diane
Keaton"))

Objective-C
// Add some MOVIE nodes
STSValue *value = [[STSValue alloc] init];

long long mLostInTranslation = [g createNode: movieType];
[g setAttribute: mLostInTranslation attr: movieIdType value: [value setLong: 1]];
[g setAttribute: mLostInTranslation attr: movieTitleType value: [value setString:

@"Lost in Translation"]];
[g setAttribute: mLostInTranslation attr: movieYearType value: [value setInteger:

2003]];

long long mVickyCB = [g createNode: movieType];
[g setAttribute: mVickyCB attr: movieIdType value: [value setLong: 2]];
[g setAttribute: mVickyCB attr: movieTitleType value: [value setString: @"Vicky

Cristina Barcelona"]];
[g setAttribute: mVickyCB attr: movieYearType value: [value setInteger: 2008]];

long long mManhattan = [g createNode: movieType];
[g setAttribute: mManhattan attr: movieIdType value: [value setLong: 3]];
[g setAttribute: mManhattan attr: movieTitleType value: [value setString: @"

Manhattan"]];
[g setAttribute: mManhattan attr: movieYearType value: [value setInteger: 1979]];

// Add some PEOPLE nodes
long long pScarlett = [g createNode: peopleType];
[g setAttribute: pScarlett attr: peopleIdType value: [value setLong: 1]];
[g setAttribute: pScarlett attr: peopleNameType value: [value setString: @"

Scarlett Johansson"]];

long long pBill = [g createNode: peopleType];
[g setAttribute: pBill attr: peopleIdType value: [value setLong: 2]];
[g setAttribute: pBill attr: peopleNameType value: [value setString: @"Bill Murray

"]];

long long pSofia = [g createNode: peopleType];
[g setAttribute: pSofia attr: peopleIdType value: [value setLong: 3]];
[g setAttribute: pSofia attr: peopleNameType value: [value setString: @"Sofia

Coppola"]];

long long pWoody = [g createNode: peopleType];
[g setAttribute: pWoody attr: peopleIdType value: [value setLong: 4]];
[g setAttribute: pWoody attr: peopleNameType value: [value setString: @"Woody

Allen"]];

long long pPenelope = [g createNode: peopleType];
[g setAttribute: pPenelope attr: peopleIdType value: [value setLong: 5]];
[g setAttribute: pPenelope attr: peopleNameType value: [value setString: @"

Penélope Cruz"]];

long long pDiane = [g createNode: peopleType];
[g setAttribute: pDiane attr: peopleIdType value: [value setLong: 6]];
[g setAttribute: pDiane attr: peopleNameType value: [value setString: @"Diane

Keaton"]];

Add edges

Now that we have all the nodes in the database we can start adding the rela-
tionships between them. As previously explained in the Set the schema section

25

we are going to build two types of relationships depending on whether the per-
son attached to a movie is part of the cast (edge CAST) or its director (edge
DIRECTS).
We are going to add an edge of type CAST between each node of type PEO-
PLE and each node of type MOVIE when the person worked as an actor in
that movie. Then, we will set the edge attribute CHARACTER as the name
of the character played by that actor in the movie.

Figure 5: Adding CAST edges (Notice that we have omitted the attributes of
the nodes)

After this, we will create an edge of type DIRECTS between a node of type
PEOPLE and a node of type MOVIE for the director of each movie.

Figure 6: Adding DIRECTS edges (Notice that we have omitted the attributes
of the nodes)

Java
// Add some CAST edges
// Remember that we are reusing the Value class instance to set the attributes
long anEdge;
anEdge = g.newEdge(castType, mLostInTranslation, pScarlett);

26

g.setAttribute(anEdge, castCharacterType, value.setString("Charlotte"));

anEdge = g.newEdge(castType, mLostInTranslation, pBill);
g.setAttribute(anEdge, castCharacterType, value.setString("Bob Harris"));

anEdge = g.newEdge(castType, mVickyCB, pScarlett);
g.setAttribute(anEdge, castCharacterType, value.setString("Cristina"));

anEdge = g.newEdge(castType, mVickyCB, pPenelope);
g.setAttribute(anEdge, castCharacterType, value.setString("Maria Elena"));

anEdge = g.newEdge(castType, mManhattan, pDiane);
g.setAttribute(anEdge, castCharacterType, value.setString("Mary"));

anEdge = g.newEdge(castType, mManhattan, pWoody);
g.setAttribute(anEdge, castCharacterType, value.setString("Isaac"));

// Add some DIRECTS edges
anEdge = g.newEdge(directsType, pSofia, mLostInTranslation);

anEdge = g.newEdge(directsType, pWoody, mVickyCB);

anEdge = g.newEdge(directsType, pWoody, mManhattan);

C#
// Add some CAST edges
// Remember that we are reusing the Value class instance to set the attributes
long anEdge;
anEdge = g.NewEdge(castType, mLostInTranslation, pScarlett);
g.SetAttribute(anEdge, castCharacterType, value.SetString("Charlotte"));

anEdge = g.NewEdge(castType, mLostInTranslation, pBill);
g.SetAttribute(anEdge, castCharacterType, value.SetString("Bob Harris"));

anEdge = g.NewEdge(castType, mVickyCB, pScarlett);
g.SetAttribute(anEdge, castCharacterType, value.SetString("Cristina"));

anEdge = g.NewEdge(castType, mVickyCB, pPenelope);
g.SetAttribute(anEdge, castCharacterType, value.SetString("Maria Elena"));

anEdge = g.NewEdge(castType, mManhattan, pDiane);
g.SetAttribute(anEdge, castCharacterType, value.SetString("Mary"));

anEdge = g.NewEdge(castType, mManhattan, pWoody);
g.SetAttribute(anEdge, castCharacterType, value.SetString("Isaac"));

// Add some DIRECTS edges
anEdge = g.NewEdge(directsType, pSofia, mLostInTranslation);

anEdge = g.NewEdge(directsType, pWoody, mVickyCB);

anEdge = g.NewEdge(directsType, pWoody, mManhattan);

C++
// Add some CAST edges
// Remember that we are reusing the Value class instance to set the attributes
oid_t anEdge;
anEdge = g->NewEdge(castType, mLostInTranslation, pScarlett);
g->SetAttribute(anEdge, castCharacterType, value->SetString(L"Charlotte"));

anEdge = g->NewEdge(castType, mLostInTranslation, pBill);

27

g->SetAttribute(anEdge, castCharacterType, value->SetString(L"Bob Harris"));

anEdge = g->NewEdge(castType, mVickyCB, pScarlett);
g->SetAttribute(anEdge, castCharacterType, value->SetString(L"Cristina"));

anEdge = g->NewEdge(castType, mVickyCB, pPenelope);
g->SetAttribute(anEdge, castCharacterType, value->SetString(L"Maria Elena"));

anEdge = g->NewEdge(castType, mManhattan, pDiane);
g->SetAttribute(anEdge, castCharacterType, value->SetString(L"Mary"));

anEdge = g->NewEdge(castType, mManhattan, pWoody);
g->SetAttribute(anEdge, castCharacterType, value->SetString(L"Isaac"));

// Add some DIRECTS edges
anEdge = g->NewEdge(directsType, pSofia, mLostInTranslation);

anEdge = g->NewEdge(directsType, pWoody, mVickyCB);

anEdge = g->NewEdge(directsType, pWoody, mManhattan);

Python
Add some CAST edges
Remember that we are reusing the Value class instance to set the attributes
an_edge = graph.new_edge(cast_type, lost_in_translation_movie , scarlett_people)
graph.set_attribute(an_edge, cast_character_type, value.set_string(u"Charlotte"))

an_edge = graph.new_edge(cast_type, lost_in_translation_movie , bill_people)
graph.set_attribute(an_edge, cast_character_type, value.set_string(u"Bob Harris"))

an_edge = graph.new_edge(cast_type, vicky_cb_movie, scarlett_people)
graph.set_attribute(an_edge, cast_character_type, value.set_string(u"Cristina"))

an_edge = graph.new_edge(cast_type, vicky_cb_movie, penelope_people)
graph.set_attribute(an_edge, cast_character_type, value.set_string(u"Maria Elena")

)

an_edge = graph.new_edge(cast_type, manhattan_movie, diane_people)
graph.set_attribute(an_edge, cast_character_type, value.set_string(u"Mary"))

an_edge = graph.new_edge(cast_type, manhattan_movie, woody_people)
graph.set_attribute(an_edge, cast_character_type, value.set_string(u"Isaac"))

Add some DIRECTS edges
an_edge = graph.new_edge(directs_type, sofia_people, lost_in_translation_movie)

an_edge = graph.new_edge(directs_type, woody_people, vicky_cb_movie)

an_edge = graph.new_edge(directs_type, woody_people, manhattan_movie)

Objective-C
// Add some CAST edges
long long anEdge;
anEdge = [g createEdge: castType tail: mLostInTranslation head: pScarlett];
[g setAttribute: anEdge attr: castCharacterType value: [value setString: @"

Charlotte"]];

anEdge = [g createEdge: castType tail: mLostInTranslation head: pBill];
[g setAttribute: anEdge attr: castCharacterType value: [value setString: @"Bob

Harris"]];

28

anEdge = [g createEdge: castType tail: mVickyCB head: pScarlett];
[g setAttribute: anEdge attr: castCharacterType value: [value setString: @"

Cristina"]];

anEdge = [g createEdge: castType tail: mVickyCB head: pPenelope];
[g setAttribute: anEdge attr: castCharacterType value: [value setString: @"Maria

Elena"]];

anEdge = [g createEdge: castType tail: mManhattan head: pDiane];
[g setAttribute: anEdge attr: castCharacterType value: [value setString: @"Mary"

]];

anEdge = [g createEdge: castType tail: mManhattan head: pWoody];
[g setAttribute: anEdge attr: castCharacterType value: [value setString: @"Isaac"

]];

// Add some DIRECTS edges
anEdge = [g createEdge: directsType tail: pSofia head: mLostInTranslation];

anEdge = [g createEdge: directsType tail: pWoody head: mVickyCB];

anEdge = [g createEdge: directsType tail: pWoody head: mManhattan];

First queries

If you have successfully completed all the previous steps in this chapter you have
now created your first graph, congratulations! The graph should look exactly
like Figure 7.

Figure 7: HelloSparksee complete graph

Although you have accomplished the main objective of this guide we encourage
you to follow the final steps: querying the graph and the necessary procedure
of closing your graph database.

Let’s propose a simple example that illustrates how to query a Sparksee graph
database. For instance you may be interested in finding out who acted in movies
directed by Woody Allen and also acted in movies directed by Sofia Coppola.
We are able to establish the connection between these two excellent directors.

29

We could start by searching for the “Woody Allen” node using the FindObject
method. However, as we have just created the graph we know that we already
have that information in a variable called pWoody because we kept it when
adding the node.

As we already have the “Woody Allen” node, our first query is to obtain the
collection of movies directed by him. For each of his movies, there is an edge
of type DIRECTS that starts from his node to a node of type MOVIE. To
retrieve this information we will use the Neighbors method against the “Woody
Allen” node through the edge DIRECTS. As we are only interested in the head
(hence the movie) of this directed edge we truncate this retrieval to “Outgoing”
only.

Java
// Get the movies directed by Woody Allen
Objects directedByWoody = g.neighbors(pWoody, directsType, EdgesDirection.Outgoing

);

C#
// Get the movies directed by Woody Allen
Objects directedByWoody = g.Neighbors(pWoody, directsType, EdgesDirection.Outgoing

);

C++
// Get the movies directed by Woody Allen
Objects *directedByWoody = g->Neighbors(pWoody, directsType, Outgoing);

Python
Get the movies directed by Woody Allen
directed_by_woody = graph.neighbors(woody_people, directs_type, sparksee.

EdgesDirection.OUTGOING)

Objective-C
// Get the movies directed by Woody Allen
STSObjects *directedByWoody = [g neighbors: pWoody etype: directsType dir:

STSOutgoing];

The result of the query is an Objects class instance. It stores a collection of
Sparksee object identifiers as a set; in this way we do not obtain duplicated
elements.

Now that we have found all the movies directed by Woody Allen, we can use
them to find the people that acted in them. To do so, we can use the Neighbors
operation again, but from the collection of movies of Woody Allen and using

30

Figure 8: Movies directed by Woody Allen

the CAST edge type. In this case, we will use Any edge direction because it is
not a directed edge.

All the Objects instances should be closed when no longer needed,
therefore we can close the directedbyWoody collection just after retrieving its
cast.

Java
// Get the cast of the movies directed by Woody Allen
Objects castDirectedByWoody = g.neighbors(directedByWoody, castType,

EdgesDirection.Any);

// We don't need the directedByWoody collection anymore, so we should close it
directedByWoody.close();

C#
// Get the cast of the movies directed by Woody Allen
Objects castDirectedByWoody = g.Neighbors(directedByWoody, castType,

EdgesDirection.Any);

// We don't need the directedByWoody collection anymore, so we should close it
directedByWoody.Close();

C++
// Get the cast of the movies directed by Woody Allen
Objects *castDirectedByWoody = g->Neighbors(directedByWoody, castType, Any);

// We don't need the directedByWoody collection anymore, so we should delete it
delete directedByWoody;

Python

31

Get the cast of the movies directed by Woody Allen
cast_directed_by_woody = graph.neighbors(directed_by_woody, cast_type, sparksee.

EdgesDirection.ANY)

We don't need the directed_by_woody collection anymore, so we should close it
directed_by_woody.close()

Objective-C
// Get the cast of the movies directed by Woody Allen
STSObjects *castDirectedByWoody = [g neighborsWithObjects: directedByWoody etype:

castType dir: STSAny];

// We don't need the directedByWoody collection anymore, so we should close it
[directedByWoody close];

We now have all the people that acted in movies directed by Woody Allen
(Figure 9) but we only wanted to know who also acted in movies directed by
Sofia Coppola.

Figure 9: Cast in movies by Woody Allen

To match the cast in movies directed by Woody Allen with the cast in movies
directed by Sofia Coppola we have to repeat the same queries previously per-
formed for Woody Allen: the first is the retrieval of movies of Sofia Coppola
followed by the retrieval of the cast of each of her movies. The result is shown
in Figure 10.

Java
// Get the movies directed by Sofia Coppola
Objects directedBySofia = g.neighbors(pSofia, directsType, EdgesDirection.Outgoing

);

// Get the cast of the movies directed by Sofia Coppola
Objects castDirectedBySofia = g.neighbors(directedBySofia, castType,

EdgesDirection.Any);

32

Figure 10: Movies and cast for Sofia Coppola

// We don't need the directedBySofia collection anymore, so we should close it
directedBySofia.close();

C#
// Get the movies directed by Sofia Coppola
Objects directedBySofia = g.Neighbors(pSofia, directsType, EdgesDirection.Outgoing

);

// Get the cast of the movies directed by Sofia Coppola
Objects castDirectedBySofia = g.Neighbors(directedBySofia, castType,

EdgesDirection.Any);

// We don't need the directedBySofia collection anymore, so we should close it
directedBySofia.Close();

C++
// Get the movies directed by Sofia Coppola
Objects *directedBySofia = g->Neighbors(pSofia, directsType, Outgoing);

// Get the cast of the movies directed by Sofia Coppola
Objects *castDirectedBySofia = g->Neighbors(directedBySofia, castType, Any);

// We don't need the directedBySofia collection anymore, so we should delete it
delete directedBySofia;

Python
Get the movies directed by Sofia Coppola
directed_by_sofia = graph.neighbors(sofia_people, directs_type, sparksee.

EdgesDirection.OUTGOING)

Get the cast of the movies directed by Sofia Coppola
cast_directed_by_sofia = graph.neighbors(directed_by_sofia, cast_type, sparksee.

EdgesDirection.ANY)

33

We don't need the directed_by_sofia collection anymore, so we should close it
directed_by_sofia.close()

Objective-C
// Get the movies directed by Sofia Coppola
STSObjects *directedBySofia = [g neighbors: pSofia etype: directsType dir:

STSOutgoing];

// Get the cast of the movies directed by Sofia Coppola
STSObjects *castDirectedBySofia = [g neighborsWithObjects: directedBySofia etype:

castType dir: STSAny];

// We don't need the directedBySofia collection anymore, so we should close it
[directedBySofia close];

In the collections called castDirectedByWoody and castDirectedBySofia we now
have all the cast in movies directed by each director respectively. But the
objective of the query was to find out who acted in movies directed by both of
them. To achieve this we only need to calculate the intersection of these two
sets of PEOPLE nodes.

Java
// We want to know the people that acted in movies directed by Woody AND in movies

directed by Sofia.
Objects castFromBoth = Objects.combineIntersection(castDirectedByWoody ,

castDirectedBySofia);

// We don't need the other collections anymore
castDirectedByWoody.close();
castDirectedBySofia.close();

C#
// We want to know the people that acted in movies directed by Woody AND in movies

directed by Sofia.
Objects castFromBoth = Objects.CombineIntersection(castDirectedByWoody ,

castDirectedBySofia);

// We don't need the other collections anymore
castDirectedByWoody.Close();
castDirectedBySofia.Close();

C++
// We want to know the people that acted in movies directed by Woody AND in movies

directed by Sofia.
Objects *castFromBoth = Objects::CombineIntersection(castDirectedByWoody ,

castDirectedBySofia);

// We don't need the other collections anymore
delete castDirectedByWoody;
delete castDirectedBySofia;

34

Python
We want to know the people that acted in movies directed by Woody AND in movies

directed by Sofia.
cast_from_both = sparksee.Objects.combine_intersection(cast_directed_by_woody ,

cast_directed_by_sofia)

We don't need the other collections anymore
cast_directed_by_woody.close()
cast_directed_by_sofia.close()

Objective-C
// We want to know the people that acted in movies directed by Woody AND in movies

directed by Sofia.
STSObjects *castFromBoth = [STSObjects combineIntersection: castDirectedByWoody

objs2: castDirectedBySofia];

// We don't need the other collections anymore
[castDirectedByWoody close];
[castDirectedBySofia close];

Remember that you should close the Objects when you are not going to use them
anymore.

We think we may have the result that we were looking for. But how do we check
the information from that Objects collection? You must use ObjectsIterator that
will traverse all the elements inside the set. With this iterator we can get all the
node identifiers in the result (PEOPLE node identifiers), one by one. Then,
for each one, we can get their attributes. We are only interested in the name of
the actor.

Here you have it! Scarlett Johansson is the link between both directors.

Figure 11: Link between Woody Allen and Sofia Coppola

Java
// Say hello to the people found
ObjectsIterator it = castFromBoth.iterator();
while (it.hasNext())

35

{
long peopleOid = it.next();
g.getAttribute(peopleOid, peopleNameType, value);
System.out.println("Hello " + value.getString());

}
// The ObjectsIterator must be closed
it.close();

// The Objects must be closed
castFromBoth.close();

C#
// Say hello to the people found
ObjectsIterator it = castFromBoth.Iterator();
while (it.HasNext())
{

long peopleOid = it.Next();
g.GetAttribute(peopleOid, peopleNameType, value);
System.Console.WriteLine("Hello " + value.GetString());

}
// The ObjectsIterator must be closed
it.Close();

// The Objects must be closed
castFromBoth.Close();

C++
// Say hello to the people found
ObjectsIterator *it = castFromBoth->Iterator();
while (it->HasNext())
{

oid_t peopleOid = it->Next();
g->GetAttribute(peopleOid, peopleNameType, *value);
std::wcout << L"Hello " << value->GetString() << std::endl;

}
// The ObjectsIterator must be deleted
delete it;

// The Objects must be deleted
delete castFromBoth;

Python
Say hello to the people found
for people_oid in cast_from_both:

graph.get_attribute(people_oid, people_name_type, value)
print "Hello ", value.get_string()

The Objects must be closed
cast_from_both.close()

Objective-C
// Say hello to the people found
STSObjectsIterator *it = [castFromBoth iterator];
while ([it hasNext])
{

long long peopleOid = [it next];

36

[g getAttributeInValue: peopleOid attr: peopleNameType value: value];
NSLog(@"Hello %@\n", [value getString]);

}
// The ObjectsIterator must be closed
[it close];

// The Objects must be closed
[castFromBoth close];

Again we have reused the Value class instance to get the value of the NAME
attribute.

Note that the ObjectsIterator should also be closed before closing the Objects
collection.

Closing the database

This guide is almost finished. You have now performed all the tasks necessary
to create a graph with its schema, add data and query this data afterwards.
There is only one inevitable and very important final step: the proper closing
of the database.

You must take into account the fact that all the collections and iterators should
be closed first. You can close them now, or an even better programming practice
is to close them as soon as they are no longer needed.

To close Sparksee, once collections and iterators have been closed, you must
first close the Session (or sessions) which will free all the temporary information
stored in it, then close the Database to proceed to the closure of the Sparksee
instance.

Java
sess.close();
db.close();
sparksee.close();

C#
sess.Close();
db.Close();
sparksee.Close();

C++
delete sess;
delete db;
delete sparksee;

Python

37

sess.close()
db.close()
sparks.close()

Objective-C
[sess close];
[db close];
[sparksee close];
// If you are not using Objective-C Automatic Reference Counting, you
// may want to release the sparksee here, when it's closed.
//[sparksee release];

38

Compile and run

To compile and run your Sparksee application you must take into account your
development framework.

Java

In the Installation chapter we have seen how to download and unpack the java
package to get the sparkseejava.jar file. You need to include that jar in you
development environment project.

If you don’t use an IDE, you just need to add the sparkseejava.jar file to
the classpath. So, you can compile and run the HelloSparksee application with
these simple commands:
$ javac -cp sparkseejava.jar HelloSparksee.java
$ java -cp sparkseejava.jar;. HelloSparksee

With Maven

If you use Apache Maven, then it is even easier. Sparksee is in the maven
central repository, adding the dependency to the correct Sparksee version into
your “pom.xml” file should be enough:
<dependency>

<groupId>com.sparsity</groupId>
<artifactId>sparkseejava</artifactId>
<version>5.0.0</version>

</dependency>

With Android

The procedure to use Sparkseejava in Android is the same for Eclipse and An-
droid Studio, but We have separated some steps to better explain the procedure
in each environment.

• Copy all the content of the lib/ directory to the libs/ directory of your
android project.

• If you want different “.apk” files for the different target architectures in-
stead of a single application file that supports all platforms or you only
want to support certain architectures, you just need to exclude from the
previous step the subdirectories of the platforms that you don’t want.

• Refresh the project explorer if you can’t see the files that you just copied.

39

http://search.maven.org/#search%7Cga%7C1%7Ca%3A%22sparkseejava%22
http://search.maven.org/#search%7Cga%7C1%7Ca%3A%22sparkseejava%22

Using Eclipse

• Right click on the libs/sparkseejava.jar file and select Build Path > Add
to Build Path.

• Set in your “AndroidManifest.xml” a minimum sdk version greater or
equal to 9.

Android Studio

• Right click on the libs/sparkseejava.jar file and select Add as library

• Add this exact text “compile files (’ libs/sparkseejava.jar ’)” to the
build.gradle file.

• Set a minimum sdk version >= 9 in the build.gradle file.

.NET

.NET developers have the following two different options to build a .NET ap-
plication.

MS Visual Studio users

If you are a MS Visual Studio IDE developer, you need to add the reference
to the Sparksee .NET library (sparkseenet.dll) in your project and set build
platform to the appropiate specific platfrom (x64 or x86). Please, check that
in the “Configuration Manager” from the “BUILD” menu of Visual Studio, the
“Platform” selected for the build is NOT “Any CPU”. If it’s “Any CPU”, you
must select “New” to set a “x86” or “x64” build target.

Figure 12: .Net compilation - setting the platform

Since all the other libraries included in the package are native libraries that will
be loaded at runtime, they must be available too. And the MS Visual C runtime
must be installed on all the computers running your application.

40

Figure 13: .Net compilation - adding reference

The best option is to copy all the other “.dll” files into the same directory where
your application executable file will be.

Using the development environment, this can be done using the option Add
existing Item, choosing to see Executable files and selecting the other three native
libraries (sparksee.dll , sparkseenetwarp.dll and stlport . dll).

Figure 14: .Net compilation - adding existing item

Next you must select the three libraries in the Solution Explorer window and set
the property Copy to Output as Copy Always for all three native libraries.

Instead of copying the native libraries to the application target directory, an
alternative would be to put all the native “.dll” files into your Windows system
folder (System32 or SysWOW64 depending on your Windows version).

Now you are ready to build and run the application like any Visual Studio
project.

Command-line users

If you just want to quickly test the HelloSparksee sample application, you can
use the command line. First setup your compiler environment with the vsvars32

41

Figure 15: .Net compilation - copy to output

.bat file (or vcvarsall .bat) if you are using a 32 bit MS Visual Studio.
> call "C:\Program Files\Microsoft Visual Studio 11.0\Common7\Tools\vsvars32.bat"

or with the vcvarsall .bat file with the appropiate argument if you are using a 64
bit MS Visual Studio.
> call "C:\Program Files (x86)\Microsoft Visual Studio 11.0\VC\vcvarsall.bat"

amd64

Then compile and run the application (assuming all the libraries have already
been copied to the same directory):
> csc /out:HelloSparksee.exe /r:sparkseenet.dll HelloSparksee.cs
> HelloSparksee.exe

C++

The Sparksee C++ interface contains include files and dynamic libraries in order
to compile and run an application using Sparksee. The general procedure is to
first add the include directories to your project, then link with the supplied
libraries corresponding to your operating system and finally copy them to any
place where they can be loaded at runtime (common places are the same folder
as the target executable file or your system libraries folder).

Let’s have a look at a more detailed description of this procedure in the most
common environments.

Remember that the package should already be unpacked in a known directory
(see chapter 2).

42

Windows

If your development environment is Microsoft Visual Studio, your first step
should be to add to the Additional include directories , C++ general property of
your project the sparksee subdirectory of the includes-folder from the Sparksee
package.

Figure 16: C++ compilation - include directories

This must also be done with the library directory, so the Additonal library
directories linker general property must be edited to add the correct subdirectory
of the Sparksee lib folder for your operating system.

Figure 17: C++ compilation - add library directories

After this, you should add the sparksee “.lib” library to the Additional
Dependencies linker input property.

Finally make sure that the dll files can be found at run time. An easy way to
do this is to add a post-process in your project to copy the dll files to the same
output folder where your application executable will be built.

An alternative would be to simply put all the native “.dll” files into your Win-
dows system folder (System32 or SysWOW64 depending on your Windows ver-
sion).

43

Figure 18: C++ compilation - add dependencies

Figure 19: C++ compilation - post build event

44

It’s important to check that the build platform selected matches the libraries
that you are using.

Figure 20: C++ compilation - platform

Now you are ready to build and run the application like any Visual Studio
project.

Finally, if you just want to quickly test the HelloSparksee sample application,
you can use the command line. First setup your compiler environment with the
vsvars32.bat file (or vcvarsall .bat) if you are using a 32-bit MS Visual Studio.
> call "C:\Program Files (x86)\Microsoft Visual Studio 11.0\Common7\Tools\vsvars32

.bat"

or with the vcvarsall .bat file with the appropiate argument if you are using a
64-bit MS Visual Studio.
> call "C:\Program Files (x86)\Microsoft Visual Studio 11.0\VC\vcvarsall.bat"

amd64

Then compile and run the application (example on a 32-bit Windows):
> cl /I"path_to_the_unpacked_sparksee\includes\sparksee" /D "WIN32" /D "_UNICODE"

/D "UNICODE" /EHsc /MD /c HelloSparksee.cpp

> link /OUT:"HelloSparksee.exe" HelloSparksee.obj /LIBPATH:"
path_to_the_unpacked_sparksee\lib\windows32" "sparksee.lib"

> xcopy /y "path_to_the_unpacked_sparksee\lib\windows32*.dll" .

> HelloSparksee.exe

Linux/MacOS

We are not going to focus on any specific integrated development environment
for Linux or Mac OS because it is beyond the scope of the guide. Instead

45

we will give a list of procedures which you can adapt for the specifics of your
development environment.

• In the includes directory, there is the subdirectory sparksee that must
be added as include search directory in your project.

• The lib directory contains a subdirectory for each operating system avail-
able. You should add the correct directory for your computer as a link
search directory in your project.

• To link your application, the sparksee and your pthread libraries must
be used in this order.

• Finally you may need to add the directory where the libraries can be found
to the LD_LIBRARY_PATH, or DYLD_LIBRARY_PATH in
MacOS, environment variable to be sure that they will be found at run-
time.

Finally, if you just want to quickly test the HelloSparksee sample application,
you can use the command line.

$ g++ -I/path_to_the_unpacked_sparksee/includes/sparksee -o HelloSparksee.o -c
HelloSparksee.cpp

$ g++ HelloSparksee.o -o HelloSparksee -L../lib/linux64 -lsparksee -lpthread

$ export LD_LIBRARY_PATH=/path_to_the_unpacked_sparksee/lib/linux64/

$./HelloSparksee

Android

The Android usage is not very different from the Linux usage.

• You also have to add the includes/sparksee directory to the includes
search path.

• The sparksee dynamic library and the provided stlport_shared library
must be included in the applicacion. There are 4 versions of each library
in subdirectories from the lib/ directory. You must use the appropiate
libraries for the processor target of your project.

• The stlport_shared is the NDK library but must be included in the
application instead of just being linked.

• The z and dl libraries from the Android NDK must be linked too.

46

iOS

Once you have extracted the Sparksee.framework directory from the distri-
bution “.dmg” file, the basic steps to use Sparksee in your Xcode application
project are the following:

• Add the Sparksee include files to the search path in your application
project: The path to Sparksee.framework/Resources/sparksee/ must be
added as non-recursive to the User Header Search Paths option on the
build settings of your xcode application project. This is required because
Sparksee include files use a hierarchy of directories not usual in an xcode
framework. Therefore, they can’t be included in the regular Headers
directory of the framework.

• Add the Sparksee.framework to the Link Binary With Libraries build
phase of your application project. You can just drag it there.

• Choose the appropiate library: libstdc++ (GNU C++ standard library)
or libc++ (LLVM C++ standard library with C++11 support) in the C++
Standard Library option in the build settings of the compiler. The option
choosen must match the downloaded version of the Sparkseecpp for iOS.

• Remember that all the source files using C++ should have the extension
“.mm” instead of “.m”.

• Take into account that, after all these changes, a Clean of your Project
may be needed.

• Setting an explicit memory limit to the Sparksee cache (using the Spark-
seeConfig class) is highly recommended. For more information about
SPARKSEE cache and the SPARKSEEConfig class check the full User
Manual and the reference guides.

Python

Sparksee Python doesn’t need to be compiled, which is a difference regarding
the other Sparksee APIs.

In order to run a Python script using Sparksee make sure that the Sparksee
module script (called sparksee.py) and the wrapper library named ”_sparksee”
are in the Python module search path.

The other available library included in Sparksee’s Python distribution is the
dynamic native library. This must be located in a specific system directory
defined by the following:

• DYLD_LIBRARY_PATH for MacoOSX systems.

• LD_LIBRARY_PATH for Linux systems.

• PATH environment variable for Windows systems.

47

Once the installation is completed you can run the script normally. The follow-
ing example assumes that the python2.7 executable is available in your path,
otherwise you should write the full path to your Python executable.

$ python ./HelloSparksee.py

Objective-C

Although both the Mac OS and iOS versions can be included in you application
project in the same way and could be used equally from the source code, the
installation of the framework and deployment of your application is slightly
different. Let’s take a look at both versions in the following sections.

MacOS

In the Installation chapter we have seen how to download, unpack the dmg file
and install the Sparksee package to get the Sparksee.framework installed in
the /Library/Frameworks/ directory. The Mac OS version of the framework is
a standard framework containing a dynamic library, so it’s installed in a fixed
standard location.

To use the Sparksee Objective-C framework in your application, you have to add
the Sparksee.framework from /Library/Frameworks/Sparksee.framework to the
Link Binary With Libraries build phase of your application project.

Then you can import the <Sparksee/Sparksee.h> header in your source
code.
#import <Sparksee/Sparksee.h>

Take into account that your application will depend on the Sparksee dynamic
library, therefore the Sparksee framework must be installed on the target com-
puters either manually or redistributed with your own installer.

Alternatively, you could include the framework as a private framework inside
your application, but then a modification of the framework library location on
the @executable_path instead of the standard /Library/Frameworks/ would be
required

iOS

In the Installation chapter we have seen how to download and unpack the dmg
file. For iOS, you don’t need to install the framework because it would be
already there. You can copy it directly to wherever you want because there is
not any established standard dynamic library framework.

48

To use the Sparksee Objective-C framework in your application, you have to
add the Sparksee.framework to the Link Binary With Libraries build phase of
your application project. You can just drag it there.

Then you can import the <Sparksee/Sparksee.h> header in your source
code.
#import <Sparksee/Sparksee.h>

Your iOS application will contain the Sparksee library embedded (it’s a static
library), so your application deployment should be exactly the same as any other
iOS application.

49

50

Download examples

Here you can download the HelloSparksee sources including all the examples
which have been explained in this starting guide.

If you have followed all the steps up to this point you should have created a
graph database which looks exactly like Figure 7.

Figure 7: HelloSparksee complete graph

You can also directly download HelloSparksee sources which, once you run them,
will construct the same graph.

HelloSparksee first creates a Sparksee graph database (see Chapter 3-section 2),
then creates the schema (see Chapter3-section 4), adds data creating nodes and
edges and their attributes (see Chapter3-section 5) and finally queries this data
(see Chapter3-section 6).

Queries included in the example retrieve neighbors from some nodes. For in-
stance all the movies directed by Woody Allen, which will be the neighbors of
Woody Allen through the DIRECTS edge. Or other more complex examples
include retrieving all the people who acted both in movies directed by Woody
Allen and in movies directed by Sofia Coppola.

Choose your HelloSparksee download language:

• Java: Hello Sparksee in Java
• .Net: Hello Sparksee for .Net
• C++: Hello Sparksee in C++
• Python2.7: Hello Sparksee in Python2.7
• Objective-C: Hello Sparksee in Objective-C

51

sources/HelloSparksee.java
sources/HelloSparksee.cs
sources/HelloSparksee.cpp
sources/HelloSparksee.py
sources/HelloSparksee.m

52

Support

This is the final section of the Sparksee starting guide. We have guided you
through the entire process of creating your first graph with Sparksee. Moreover,
you have added data to your graph and finally queried it.

We encourage you to learn more about the advanced features of Sparksee, prac-
tice with the rest of available queries & functionalities, and build your own
application.

While developing do not forget to consult the Sparksee reference manuals.
Reference manuals are included in the doc directory of the Sparksee package.
You can also directly consult the information in the documentation section of
our website choosing your preferred programming language.

Also in the documentation section of the Sparsity Technologies website you can
find tutorials that will give you further details about Sparksee.

Our contact information can be found in the Developers page of the Sparsity
Technologies web site.

Finally do not forget to follow us on twitter, facebook and linkedin. You can
share your doubts and thoughts there too!

53

https://www.sparsity-technologies.com/developers
https://www.sparsity-technologies.com/developers
https://www.sparsity-technologies.com/developers
http://twitter.com/sparsitytech
http://www.facebook.com/pages/Sparsity-Technologies/158957260788675
http://www.linkedin.com/groupRegistration?gid=3500280

	Getting started
	Installation
	Download
	Unpacking
	Java
	.NET
	C++
	Python
	Objective-C

	License

	Hello Sparksee
	Setting up
	Create a Sparksee database
	Sessions and transactions
	Set the schema
	Create node types
	Create edge types

	Adding data
	Add nodes
	Add edges

	First queries
	Closing the database

	Compile and run
	Java
	With Maven
	With Android

	.NET
	MS Visual Studio users
	Command-line users

	C++
	Windows
	Linux/MacOS
	Android
	iOS

	Python
	Objective-C
	MacOS
	iOS

	Download examples
	Support

